## LOYOLA COLLEGE (AUTONOMOUS), CHENNAI – 600 034 M.C.A. DEGREE EXAMINATION – COMPUTER APPLICATION

## FIRST SEMESTER – NOVEMBER 2007

MT 1902 /CA 1804- MATHEMATICS FOR COMPUTER APPLICATIONS AL 2

| Dete : 02/44/2007                                                                                                                                                                                                                                                                                                                                                   |                                                                     |                                                                       |                                |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------|-----------------------------------------------------------------------|--------------------------------|
| Date : 02/11/2007<br>Time : 1:00 - 4:00                                                                                                                                                                                                                                                                                                                             | Dept. No.                                                           |                                                                       | Max. : 100 Marks               |
|                                                                                                                                                                                                                                                                                                                                                                     | SE                                                                  | CTION A                                                               |                                |
| Answer ALL the questions.                                                                                                                                                                                                                                                                                                                                           |                                                                     |                                                                       | (10  x  2 = 20)                |
| <ol> <li>Define a Boolean algebra.</li> <li>What are the three connectives used in the object language?</li> <li>Construct the truth table for P ∨ P.</li> <li>Define Phrase structure grammar.</li> <li>Construct a regular grammar for the language L = {a<sup>n</sup>b<sup>m</sup> / n, m ≥ 1}</li> <li>Define a Non – Deterministic finite automata.</li> </ol> |                                                                     |                                                                       |                                |
| 7. Which of the following relations in the set of human beings are equivalence relations (i)<br>$R = \{(a,b) : a \text{ is wife of } b\}$ (ii) $R = \{(a,b) : a \text{ is brother of } b\}$ .                                                                                                                                                                       |                                                                     |                                                                       |                                |
| <ul><li>8. Show that if any five integers from 1 to 8 are chosen, then at least two of them will have a sum 9.</li><li>9. State Kuratowski's theorem for planarity.</li></ul>                                                                                                                                                                                       |                                                                     |                                                                       |                                |
| 10. If $a \in G$ and $a^n = e$ , prove that $o(a)$ divides n.                                                                                                                                                                                                                                                                                                       |                                                                     |                                                                       |                                |
| SECTION B                                                                                                                                                                                                                                                                                                                                                           |                                                                     |                                                                       |                                |
| Answer ALL the questions.                                                                                                                                                                                                                                                                                                                                           |                                                                     |                                                                       | $(5 \times 8 = 40)$            |
| 11. (a) Prove that a bijective map of a lattice L into a lattice $L'$ is a lattice isomorphism if and only if its inverse is order preserving.                                                                                                                                                                                                                      |                                                                     |                                                                       |                                |
| r                                                                                                                                                                                                                                                                                                                                                                   | -                                                                   | (or)                                                                  |                                |
| <ul> <li>(b) Prove that the complement a' of any element 'a' of a Boolean algebra B is uniquely determined. Prove also that the map a → a' is an anti-automorphism of period ≤ 2 and a → a' satisfies (a ∨ b)' = a' ∧ b', (a ∧ b)' = a' ∨ b', a'' = a.</li> </ul>                                                                                                   |                                                                     |                                                                       |                                |
| 12. (a) Discuss about Negation, Conjuction and Disjunction connectives.<br>(or)                                                                                                                                                                                                                                                                                     |                                                                     |                                                                       |                                |
| (b) Consider $G = (V, T, P, S)$ , where $V = \{S, A, B\}$ , $T = \{a, b\}$ , and P consists of the following:                                                                                                                                                                                                                                                       |                                                                     |                                                                       |                                |
| $S \rightarrow aB$                                                                                                                                                                                                                                                                                                                                                  | $S \rightarrow bA$                                                  |                                                                       |                                |
| $S \to aB$ $A \to a$ $B \to b$                                                                                                                                                                                                                                                                                                                                      | $\begin{array}{c} A \rightarrow aS \\ B \rightarrow bS \end{array}$ | $\begin{array}{c} A \rightarrow bAA \\ B \rightarrow aBB \end{array}$ |                                |
| Prove that the language $L(G)$ is the set of all words $T^+$ consisting of an equal number of <i>a</i> 's and <i>b</i> 's.                                                                                                                                                                                                                                          |                                                                     |                                                                       |                                |
| 13. (a) (i) Define Context – free grammar.                                                                                                                                                                                                                                                                                                                          |                                                                     |                                                                       |                                |
| (ii) Construct a context sensitive grammar for the language $L = \{a^n b^m a^n / n, m \ge 1\}$ .<br>(or)                                                                                                                                                                                                                                                            |                                                                     |                                                                       |                                |
| (b) Let L be a set accepted<br>deterministic finite aut                                                                                                                                                                                                                                                                                                             |                                                                     | stic finite automaton. T                                              | Then prove that there exists a |
| <ul> <li>14. (a) Give an example of a relation which is:</li> <li>(i) reflexive and transitive but not symmetric</li> <li>(ii) symmetric and transitive but not reflexive</li> <li>(iii) reflexive and symmetric but not transitive</li> </ul>                                                                                                                      |                                                                     |                                                                       |                                |

- (b) (i) Show that the relation  $R = \{(a, b) / a b = k m \text{ for some fixed integer } m \text{ and } a, b, k \in Z\}$  is an equivalence relation.
  - (ii) A man has 7 relatives, 4 of them are ladies and 3 gentlemen and his wife has 7 relatives, 3 of them are ladies and 4 gentlemen. In how many ways can they invite ladies and 3 gentlemen for a dinner party so that there are 3 of man's relatives and 3 of his wife's relatives?

- 15. (a) (i) Prove that there is a one-to-one correspondence between any two left cosets of a subgroup H in G.
- (ii) Prove that a subgroup N of a group G is a normal subgroup of G iff every left coset of N in G is a right coset of N in G.

(or)

- (b) (i) If G is a graph in which the degree of every vertex is at least two then prove that G contains a cycle.
- (ii) Prove that a closed walk of odd length contains a cycle.

## **SECTION C**

## Answer any TWO questions.

16. (a) Prove that a non-empty set L together with two binary operations  $\land$  and  $\lor$  is said to form a lattice if and only if for every  $a, b, c \in L$ , the following conditions hold.

 $(2 \times 20 = 40)$ 

 $L_1$ :  $a \land a = a, a \lor a = a$ .

- $L_2: a \land b = b \land a, a \lor b = b \lor a.$
- L<sub>3</sub>:  $a \land (b \land c) = (a \land b) \land c$ ,  $a \lor (b \lor c) = (a \lor b) \lor c$ .
- L<sub>4</sub>:  $a \land (a \lor b) = a$ ,  $a \lor (a \land b) = a$ .
- (b) For the finite automaton  $M = (Q, \Sigma, \delta, q_0, F)$ ,



give the transition table and show that 11010010 is in L(M).

(15 + 5)

- 17. (a) Write a short note on principal disjunctive normal form and construct an equivalent formula for  $(P \land Q) \lor (] P \land R) \lor (Q \land R)$ .
- (b) State and prove the pumping lemma for regular sets.

(10 + 10)

18. (a) Let G be a (p,q) graph. Then prove that the following statements are equivalent

(i) G is a tree.

- (ii) Every two points of G are joined by a unique path.
- (iii) G is connected and p = q + 1.

(iv) G is acyclic and p = q + 1.

(b) Show that the intersection of two normal subgroups of G is a normal subgroup of G.

(14 + 6)

-----