M.C.A. DEGREE EXAMINATION - COMPUTER APPLICATION
 FIRST SEMESTER - NOVEMBER 2007
 MT 1902 /CA 1804- MATHEMATICS FOR COMPUTER APPLICATIONS
 AL 2

Date: 02/11/2007
Time : 1:00-4:00
Dept. No. \square

Max. : 100 Marks

SECTION A

Answer ALL the questions.
$(10 \times 2=20)$

1. Define a Boolean algebra.
2. What are the three connectives used in the object language?
3. Construct the truth table for $\mathrm{P} \vee\urcorner \mathrm{P}$.
4. Define Phrase structure grammar.
5. Construct a regular grammar for the language $L=\left\{a^{n} b^{m} / n, m \geq 1\right\}$
6. Define a Non - Deterministic finite automata.
7. Which of the following relations in the set of human beings are equivalence relations (i) $R=\{(a, b): a$ is wife of b$\}$ (ii) $R=\{(a, b): a$ is brother of b$\}$.
8. Show that if any five integers from 1 to 8 are chosen, then at least two of them will have a sum 9 .
9. State Kuratowski's theorem for planarity.
10. If $a \in G$ and $a^{n}=e$, prove that $o(a)$ divides n .

SECTION B

Answer ALL the questions.
11. (a) Prove that a bijective map of a lattice L into a lattice L^{\prime} is a lattice isomorphism if and only if its inverse is order preserving.
(b) Prove that the complement a^{\prime} of any element ' a ' of a Boolean algebra B is uniquely determined. Prove also that the map $a \rightarrow a^{\prime}$ is an anti-automorphism of period ≤ 2 and $a \rightarrow a^{\prime}$ satisfies $(a \vee b)^{\prime}=a^{\prime} \wedge b^{\prime},(a \wedge b)^{\prime}=a^{\prime} \vee b^{\prime}, a^{\prime \prime}=a$.
12. (a) Discuss about Negation, Conjuction and Disjunction connectives.
(or)
(b) Consider $G=(V, T, P, S)$, where $V=\{S, A, B\}, T=\{a, b\}$, and P consists of the following:
$S \rightarrow a B$
$S \rightarrow b A$
$A \rightarrow a \quad A \rightarrow a S$
$A \rightarrow b A A$
$B \rightarrow b$
$B \rightarrow b S$
$B \rightarrow a B B$

Prove that the language $L(G)$ is the set of all words T^{+}consisting of an equal number of a 's and b 's.
13. (a) (i) Define Context - free grammar.
(ii) Construct a context sensitive grammar for the language $L=\left\{a^{n} b^{m} a^{n} / n, m \geq 1\right\}$.
(or)
(b) Let L be a set accepted by a non-deterministic finite automaton. Then prove that there exists a deterministic finite automaton that accepts L.
14. (a) Give an example of a relation which is:
(i) reflexive and transitive but not symmetric
(ii) symmetric and transitive but not reflexive
(iii) reflexive and symmetric but not transitive

> (or)
(b) (i) Show that the relation $\mathrm{R}=\{(a, b) / a-b=k m$ for some fixed integer m and $a, b, k \in Z\}$ is an equivalence relation.
(ii) A man has 7 relatives, 4 of them are ladies and 3 gentlemen and his wife has 7 relatives, 3 of them are ladies and 4 gentlemen. In how many ways can they invite ladies and 3 gentlemen for a dinner party so that there are 3 of man's relatives and 3 of his wife's relatives?
15. (a) (i) Prove that there is a one-to-one correspondence between any two left cosets of a subgroup H in G .
(ii) Prove that a subgroup N of a group G is a normal subgroup of G iff every left coset of N in G is a right coset of N in G .
(b) (i) If G is a graph in which the degree of every vertex is at least two then prove that G contains a cycle.
(ii) Prove that a closed walk of odd length contains a cycle.

SECTION C

Answer any TWO questions.

$$
(2 \times 20=40)
$$

16. (a) Prove that a non-empty set L together with two binary operations \wedge and \vee is said to form a lattice if and only if for every $a, b, c \in L$, the following conditions hold.
$L_{1}: a \wedge a=a, a \vee a=a$.
$L_{2}: a \wedge b=b \wedge a, a \vee b=b \vee a$.
$L_{3}: a \wedge(b \wedge c)=(a \wedge b) \wedge c, a \vee(b \vee c)=(a \vee b) \vee c$.
$\mathrm{L}_{4}: \mathrm{a} \wedge(\mathrm{a} \vee \mathrm{b})=\mathrm{a}, \mathrm{a} \vee(\mathrm{a} \wedge \mathrm{b})=\mathrm{a}$.
(b) For the finite automaton $M=\left(Q, \Sigma, \delta, q_{0}, F\right)$,

give the transition table and show that 11010010 is in $L(M)$.
17. (a) Write a short note on principal disjunctive normal form and construct an equivalent formula for $(P \wedge Q) \vee(\rceil P \wedge R) \vee(Q \wedge R)$.
(b) State and prove the pumping lemma for regular sets.
18. (a) Let G be a (p, q) graph. Then prove that the following statements are equivalent
(i) G is a tree.
(ii) Every two points of G are joined by a unique path.
(iii) G is connected and $\mathrm{p}=\mathrm{q}+1$.
(iv) G is acyclic and $\mathrm{p}=\mathrm{q}+1$.
(b) Show that the intersection of two normal subgroups of G is a normal subgroup of G .
